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Abstract 

Background Traditional clustering techniques are typically restricted to either continuous or categorical variables. 
However, most real-world clinical data are mixed type. This study aims to introduce a clustering technique specifically 
designed for datasets containing both continuous and categorical variables to offer better clustering compatibility, 
adaptability, and interpretability than other mixed type techniques.

Methods This paper proposed a modified Gower distance incorporating feature importance as weights to main-
tain equal contributions between continuous and categorical features. The algorithm (DAFI) was evaluated using 
five simulated datasets with varying proportions of important features and real-world datasets from the 2011–2014 
National Health and Nutrition Examination Survey (NHANES). Effectiveness was demonstrated through comparisons 
with 13 clustering techniques. Clustering performance was assessed using the adjusted Rand index (ARI) for accuracy 
in simulation studies and the silhouette score for cohesion and separation in NHANES. Additionally, multivariable 
logistic regression estimated the association between periodontitis (PD) and cardiovascular diseases (CVDs), adjusting 
for clusters in NHANES.

Results In simulation studies, the DAFI-Gower algorithm consistently performs better than baseline methods 
according to the adjusted Rand index in settings investigated, especially on datasets with more redundant features. In 
NHANES, 3,760 people were analyzed. DAFI-Gower achieves the highest silhouette score (0.79). Four distinct clusters 
with diverse health profiles were identified. By incorporating feature importance, we found that cluster formations 
were more strongly influenced by CVD-related factors. The association between periodontitis and cardiovascular 
diseases, after adjusting for clusters, reveals significant insights (adjusted OR 1.95, 95% CI 1.50 to 2.55, p = 0.012), high-
lighting severe periodontitis as a potential risk factor for cardiovascular diseases.

Conclusions DAFI performed better than classic clustering baselines on both simulated and real-world datasets. 
It effectively captures cluster characteristics by considering feature importance, which is crucial in clinical settings 
where many variables may be similar or irrelevant. We envisage that DAFI offers an effective solution for mixed type 
clustering.

Keywords Clustering, Distance measure, Feature importance, Mixed type data

*Correspondence:
Pinyan Liu
pinyanliu@u.duke.nus.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-024-02427-8&domain=pdf


Page 2 of 15Liu et al. BMC Medical Research Methodology          (2024) 24:305 

Background
 Data-driven population segmentation in clinical settings 
separates heterogeneous populations into homogenous 
groups with similar disease burdens and healthcare fea-
tures [1]. Different care plans can be designed for each 
population subgroup using population segmentation [2]. 
Healthcare resource planning and evidence-based policy-
making are both improved by using population segmen-
tation analysis [3]. However, conventional segmentation 
has faced challenges due to the cost of patient informa-
tion collection, which often involves time-consuming 
and labor-intensive processes such as manual data entry 
and extensive medical examinations. Electronic health 
records (EHRs) and population health surveys have 
become primary sources for clinical research, enhancing 
segmentation with their accessibility and granularity [3]. 
Clustering analysis is widely used for data-driven seg-
mentation [1] but struggles with mixed type data, which 
includes both continuous and categorical variables. Tra-
ditional clustering algorithms, like k-means, are limited 
to continuous variables, posing challenges when dealing 
with mixed type data [4].

Clustering mixed type data in biomedicine holds sig-
nificant value due to its ability to address complex and 
heterogeneous data sets [5]. It enables patient stratifica-
tion [6], pattern discovery in genomics [7], personalized 
medicine [8], disease marker identification [9], and link-
ing genetics with brain imaging [10]. Another important 
benefit of clustering is to help gain different insights into 
associations among people sharing similar baseline char-
acteristics [11].

Analysts have attempted to transform mixed type data 
into a uniform type for clustering [12, 13], for example, 
converting all variables into continuous ones and using 
k-means to calculate Euclidean distances [14, 15]. But 
this transformation often results in a loss of information, 
impairing segmentation quality. The k-prototypes algo-
rithm [16], an adaptation of k-means, combines squared 
Euclidean and matching distances to cluster mixed data. 
User-defined weighting factors set the importance of 
each variable type, echoing the limitations of using Gow-
er’s distance. However, most previous weighting methods 
don’t fully address the challenges of mixed data [17, 18], 
often failing to balance the influence of continuous and 
categorical variables effectively [19, 20].

Model-based clustering assumes data comes from 
various probability distributions, with each represent-
ing a different cluster [21–23]. This method is effective 
for mixed-type datasets where other clustering tech-
niques struggle [24]. It uses distributions (like Gaussian 
or multinomial) to model clusters and the Expectation-
Maximization (EM) algorithm to estimate distribution 
parameters and assign data points to clusters [25]. While 

adaptable and useful for determining cluster membership 
probabilities and the number of clusters, it can falter if its 
assumptions are not met.

KAMILA [26] (KAymeans for MIxed Large data), an 
efficient variant of the k-means algorithm [15], addresses 
the challenge of clustering mixed continuous and cat-
egorical data without heavy parametric assumptions [23]. 
Simulation results indicate that it handles large datasets 
effectively, addressing both data types without explicit 
weighting, with potential advantages over methods such 
as normal-multinomial mixture models and the Modha-
Spangler weighting approach in certain contexts [27, 28].

In addition to clustering algorithms, many distance 
metrics were proposed for mixed type data, which inte-
grate different types of variables’ distance, with Gower’s 
distance being the most popular [29]. However, Gower 
distance can be dominated by categorical variables, 
neglecting the important differences within variable 
types [30]. This paper explores the efficacy of current 
clustering techniques for handling mixed type data and 
identifies a gap in using Gower distance to consider the 
influence of both continuous and categorical variables 
evenly.

To address this gap, we introduce an innovative two-
step framework for mixed type clustering with a new 
modified and weighted Gower distance, DAFI-Gower, 
considering distance adjustment and feature importance 
to improve clustering quality and interpretability. The 
performance of the DAFI-Gower method was evaluated 
using simulated data and compared with other mixed 
type clustering techniques to assess clustering qual-
ity. Additionally, its application was demonstrated using 
real-world datasets to identify distinct health profiles, 
particularly those related to periodontitis (PD) and car-
diovascular diseases (CVDs). The method also aids in 
adjusting for confounders in association analyses through 
clustering.

Methods
This section details our proposed two-step framework: 
first, a distance matrix is constructed to quantify a bal-
anced distance measurement between different types of 
variables; second, a clustering algorithm is applied using 
this distance matrix. The distance matrix employs our 
modified Gower distance, incorporating distance adjust-
ment and mutual information-based feature importance 
(DAFI) weights.

Gower distance
Distance metrics created for mixed data sets, such as 
Gower distance [29], are widely used for measuring the 
degree of dissimilarity between observations when mixed 
type features are present. Assume a mixed type dataset 
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X with n observations has p features, where the first h 
features are continuous, and the remaining features from 
h + 1 to p are categorical. Therefore, the Gower distance 
between two observations xi = (x1i, x2i, ., xji, ., xpi) 
and xk = (x1k , x2k , ., xjk , ., xpk) from dataset X (i, 
k∈ {1,2, . . . , n}) is:

where dj xji, xjk  is defined differently for continuous 
and categorical variables:

where Rj is the range for the value of jth continuous 
feature, with xji and xjk being the values of the jth fea-
ture for observations xi and xk separately. I(xji  = xjk) 
is 1 if xji  = xjk and 0 otherwise. The default setting in 
Gower distance specifies equal weights for all variables, 
while a vector of variable importance could be applied 
to dj(xi, xk) as an optional choice. Gower distance in a 
clinical context compares patients by assigning higher 
weights to more critical variables, such as focusing on 
recovery time and complications for evaluating treat-
ment outcomes [31], ensuring that these attributes have 
a greater influence on the similarity calculation for more 
accurate patient comparisons.

In conventional Gower distance calculation, categori-
cal variables often impact the results more than continu-
ous ones because a categorical difference can easily reach 
the maximum distance of 1. In contrast, the difference 
in a continuous variable only reaches 1 when calculated 
between the extremes (minimum and maximum values). 
This discrepancy can cause categorical variables to dis-
proportionately influence the distance metric and affect 
subsequent analysis, as categorical differences are more 
common and can overshadow the nuanced differences 
captured by continuous variables. For instance, two indi-
viduals with a 63-year age difference (continuous) may 
have a smaller Gower distance than those differing only 
by sex (categorical).

To address the imbalance in Gower distance calcula-
tions, D’Orazio [30] suggested using the inter-quartile 
range (IQR) for continuous variables to reduce outlier 
impacts and balance variable contributions but not hav-
ing similar adjustments made for categorical variables.

Proposed modified Gower distance
To improve the handling of categorical variables, we 
converted categorical values into dummy variables 
to refine the distance measure, aligning it with con-
tinuous variables (Fig.  1). However, this method can 
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disproportionately affect datasets with variables that have 
many categorical levels. To address this, adjusted weights 
were proposed for categorical features using continuous 
features as references, and for continuous features, scal-
ing the Manhattan distance (the absolute difference) by 
the IQR is kept using as recommended by D’Orazio [30]. 
This method achieves a more fine-grind and balanced 
assessment of dissimilarity for mixed type variables, 
ensuring continuous and categorical features contribute 
equitably to the overall distance measure. Below are the 
details for calculating weights.

Continuous features
For each continuous feature, the sum of the absolute 
differences is calculated between all possible pairs of 
observations. Mathematically, for each feature column 
Xj(j ∈ {1,2, . . . , h}) , the sum of distances is given by:

where n is the number of observations. Then, the cal-
culated sum distance is divided by the difference between 
the first and third quartiles [30]. Mathematically:
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 are the third and first quar-
tiles of the jth continuous feature.

Categorical features
Each categorical feature Xj , (j ∈ {h+ 1, h+ 2, . . . , p}),

with L levels is converted into L dummy variables 
first, where Xj[m] denotes the mth dummy variable 
(m∈ {1,2, . . . , L}). Then, the sum of the differences is 
calculated for all L dummy variables between each pair 
of observations. Mathematically, for each feature column 
Xj , the sum of distances is given by:

where x(j[m])i is the  mth dummy variable of categorical 
feature Xjfor the ith observation, and L is the total num-
ber of dummy variables for the categorical feature Xj . 
Then, the distance is averaged by the number of dummy 
variables L. An example for comprehension is available in 
Supplementary Fig. 1.

As mentioned earlier, the adjusted distance for cat-
egorical variables is calculated then. This is done by scal-
ing the original distance DXj for categorical variables. We 
multiply by the scaling factor ( α j), which is the ratio of 
the average of normalized distances for the continuous 
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features QXq (q ∈ {1,2, . . . , h}) to the categorical features 
DXj (j ∈ {h+ 1, h+ 2, . . . , p}):

As previously mentioned, QXq and DXj represent total 
distance contributed by a continuous feature Xq and a 
categorical feature Xj , respectively, they can be inter-
preted as the contributions to the overall distance. There-
fore, with the scaling factor α j in the modified Gower 
distance to adjust the D′ Xj = α j x DXj =

−

QX , we guar-
antee the balanced contribution of continuous and cat-
egorical features toward the total distance.

Proposed modified and weighted Gower distance 
with feature importance
After aligning the distance measures for continuous and 
categorical features, the modified Gower distance matrix 
is used for clustering. Clustering quality and interpreta-
tions are critical, especially in clinical settings. Therefore, 
identifying key features is crucial for effective analysis, 
moving beyond mere grouping subjects to determining 
which features significantly influence group formation. 
This improves clustering interpretations by addressing 
the limitations of its unsupervised nature. Therefore, 

α j =

1
h

∑ h
q=1QXq

DXj

=

−

QX

DXj

incorporating feature importance as weights was pro-
posed in the modified Gower distance to obtain the final 
dissimilarity matrix.

Information theory concepts like entropy and mutual 
information (MI) are crucial for evaluating feature impor-
tance [32]. Before the calculation of entropy and MI, con-
tinuous variables are converted into categorical variables 
based on quartiles [19, 33]. Entropy (H(X)) measures the 
uncertainty of a discrete variable, indicating higher infor-
mation content with greater unpredictability [34]. Fur-
thermore, MI ( I(X1;X2)) measures how much knowing 
one variable reduces the uncertainty of another, which is 
crucial for selecting relevant features by quantifying the 
information shared between variables. However, MI can 
suffer from redundancy, capturing overlapping informa-
tion from multiple variables and overestimating their 
importance [35]. Normalized MI (NMI), a variant of MI, 
addresses this by providing better accuracy and handling 
redundancy [36]. It is defined as:

Horibe [37] demonstrated that MI scaled by the max-
imum of entropy is a valid distance metric, making it a 
normalized similarity metric [38]. Mousavi and Elahe 
[39] also introduced a unified framework based on 

NMI(X1;X2) =
I(X1;X2)

max{H(X1), H(X2)}

Fig. 1 The overall framework of the DAFI-Gower algorithm used for mixed type clustering
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mutual information control variables’ contribution to 
distance measurement, which could prevent unnecessary 
information. Therefore, to measure feature importance, 
the average NMI of each feature with all other features 
was proposed as the weighting parameter ω . Procedures 
for calculating the weighting parameter ω for the jth fea-
ture are shown below (Algorithm  1). In detail, for each 
feature j, the algorithm calculates how much information 
it shares with every other feature using NMI. The total 
NMI score for feature j is then averaged and stored in a 
vector. Finally, the importance weights are normalized by 
dividing the sum of all weights, ensuring they add up to 1.

Algorithm 1 Pseudo-code for feature importance weights

This approach considers both the intrinsic uncertainty 
of features and their mutual dependency on each vari-
able. Therefore, the entire DAFI-Gower distance is calcu-
lated as:

where dj
(
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)

 is calculated through:

According to the formula for the DAFI-Gower dis-
tance, which involves summation terms, the calcula-
tion requires iterating over i (from 1 to n) for each k 
(also ranging from 1 to n). Therefore, for any given L, 
the time complexity is O(n2), indicating that as the size 
of the dataset (n) increases, the number of computations 
grows quadratically. Analysis was also conducted to com-
pare the execution time of DAFI-Gower algorithm using 
NHANES.
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The proposed study design using DAFI‑Gower algorithm
The novel mixed type clustering technique (Fig.  1) pro-
vides a balanced distance measurement and incorporates 
feature importance as weights. In the first phase, the 
DAFI-Gower algorithm is designed to calculate the dis-
tance matrix through three main parts: calculating the 
modified Gower distance, adjusting the distance with fac-
tor α , and incorporating feature importance ω as weights. 
The resulting DAFI-Gower distance matrix is then used 
for subsequent clustering analysis. Partitioning around 
medoids (PAM) [40, 41]) is chosen, as it allows clustering 
based on a predefined distance matrix. While our cur-

rent framework employs PAM, it can accommodate any 
clustering algorithm that accepts a predefined distance 
matrix.

Simulation settings
Simulation studies were conducted to compare the 
accuracy of the proposed method against commonly 
used clustering techniques for mixed type data, evalu-
ate improvements from different feature importance 
strategies, and assess scalability with heterogene-
ous datasets with different proportions of important 
features contributing to clustering (feature impor-
tance). The adjusted Rand index (ARI) was calculated 
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to measure the similarity between true and predicted 
clustering [42], where ARI ranges from − 1 (indicating 
totally different) to 1 (indicating a perfect match), with 
0 indicating the similarity between the two partitions is 
what would be expected by chance [42].

Five simulation settings with different proportions 
of feature importance were generated (Supplementary 
Table  1), reflecting real-world clinical scenarios with 
many redundant variables. Three underlying true clus-
ters with cluster sizes of 60, 60, and 80 were assumed. 
Each study had five continuous and five categorical 
variables. Five continuous variables were drawn from 
normal distributions with cluster-specific means and 
standard deviations. If the variable has the same mean 
for all clusters, it did not contribute to cluster forma-
tion. Additionally, five categorical variables were gen-
erated with predefined categories and cluster-specific 
probabilities. Similarly, if the variable has the same 
probabilities for all clusters, it had no contribution to 
cluster formation. Data points were assigned to clusters 
based on these parameters, resulting in distinct cluster 
profiles. This process was repeated 500 times to create 
datasets for further analysis. To validate the reproduc-
ibility of DAFI-Gower, we conducted additional simu-
lations with cluster sizes of 30, 60, and 90, simulating 
scenarios with less balanced cluster sizes. All other 
parameters were kept consistent with the previous set-
tings. The scenarios were:

(1)   4/5 of both continuous and categorical variables 
contribute to clustering.

(2) 3/5 of both continuous and categorical variables 
contribute.

(3) 2/5 of both continuous and categorical variables 
contribute.

(4) 1/5 of both continuous and categorical variables 
contribute.

(5) 2/5 of continuous and 4/5 of categorical variables 
contribute.

Simulation scenario 5 was designed to reflect real-
world settings like social science and EHRs, where 
categorical variables usually dominate the datasets. 
For each setting, 500 datasets were generated. After 
using DAFI-Gower to calculate the distance matrix, we 
applied PAM for the clustering analysis.

In order to compare the overall performance of 
DAFI-Gower with commonly used mixed type cluster-
ing techniques, as well as evaluate each component’s 
importance in DAFI-Gower, we designed simulation 
studies into three parts:

Part I: Comparison of DAFI-Gower with commonly 
used mixed type clustering techniques:

(1) K-prototypes [16] (an adaptation of k-means, com-
bines squared Euclidean and matching distances to 
cluster mixed data). This method was implemented 
by its authors in the clustMixType R package [43];

(2) K-means (categorical factors are treated as numeric; 
non-numeric categories are assigned arbitrary 
numeric codes for clustering);

(3) K-modes (discretize all continuous variables into cat-
egorical ones based on quartiles; for example, given a 
continuous variable x, define the quartile boundaries 
Q1 (25th percentile of x), Q2 (50th percentile of x), Q3 
(75th percentile of x). Now, define a new categorical 
variable xcat = 1 (if x ≤ Q1) ; 2 (if Q1 ≤ x ≤ Q2) ; 
3 (if Q2 ≤ x ≤ Q3) ; 4 (if x > Q3).)

(4) K-prototypes with Gower distance;
(5) KAymeans for MIxed Large data(KAMILA) [44] This 

clustering algorithm integrates the k-means algorithm 
and Gaussian-multinomial mixture models. Like 
k-means, avoids making strict parametric assump-
tions about continuous variables. Similar to Gaussian-
multinomial mixture models, KAMILA effectively 
balances the contributions of continuous and cat-
egorical variables without presetting weights, instead 
relying on a data-driven density estimator [23];

(6) PAM with Gower distance.

Part II: Comparison of DAFI-Gower with three fea-
ture importance algorithms as baseline feature impor-
tance methods, to evaluate the performance of NMI (see 
Table 1 elaborating on the properties of these methods):

(1) Distance-based on co-occurrence of values (Algo_
distance) [19, 33]. It discretized the continuous 
attributes and calculated the distance between 
every pair of attribute values for all attributes. Then, 
they modified the k-means algorithm to contain the 
distribution of all categorical values in a cluster.

(2) Two-stage approach (FR & FS) [45]. This method-
ology employs three fundamental strategies: filter, 
wrapper, and hybrid (a fusion of both filter and 
wrapper) to identify relevant and non-redundant 
features. This work introduces a robust and effi-
cient two-phase (i.e., feature ranking and feature 
selection) method. In the stage of feature ranking, 
they employed entropy and mutual information 
to provide a normalization to rank features, and 
then define the feature weight as the degree of the 
unique or non-shared information (entropy minus 
the normalization value) of an individual feature.

(3) Standard mutual information (elaborated in 
Sect. 2.3). This measures the amount of information 
shared between two random variables, quantifying 
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how much knowing one variable reduces uncer-
tainty about the other.

Part III: Comparison of different DAFI-Gower com-
binations (Fig. 1) to evaluate the individual components 
of the technique (see Table 1 elaborating on the proper-
ties of these methods):

(1) Distance was calculated using modified Gower dis-
tance, and clustering was performed using PAM.

(2) Distance was calculated using modified Gower dis-
tance and distance adjustment, and clustering was 
performed using PAM.

(3) Distance was calculated using modified Gower dis-
tance and feature importance, and clustering was 
performed using PAM.

(4) DAFI-Gower distance matrix was calculated using 
all three components (modified Gower distance, 
distance adjustment, and feature importance), and 
clustering was performed using PAM.

The median ARI values, along with the 25th and 75th 
quartile, were reported for all statistics. All data analy-
sis was implemented in R. All algorithms were per-
formed with default values, except for the specified data 
and the number of clusters. For k-means clustering, the 
‘nstart’ parameter was set to 10 rather than the default 
of 1 to improve result stability. The source code of the 
data analysis is available from the authors in:[https:// 
github. com/ Pinyan- Liu/ DAFI- Gower- Dista nce ] [46].

Empirical study settings
To demonstrate the practical implementation of the 
DAFI-Gower distance clustering algorithm, we utilized 
real datasets to evaluate the proposed method’s perfor-
mance against the methods in the three parts described 
above, following the study design in Fig. 1.

CVDs are inflammatory conditions of the coronary 
arteries and the leading cause of death globally. In recent 
decades, investigators have focused on the impact of PD 
on CVDs, a potential risk factor, promoting the develop-
ment and instability of arterial atheroma [47]. To deliver 
a comprehensive representation of the relationship, we 
proposed to estimate the association between PD sever-
ity following the 2012 Centers for Disease Control and 
Prevention (CDC)/American Academy of Periodontol-
ogy (AAP) [48] (see Supplementary Table  5) and CVDs 
by adjusting for distinct clusters with similar characteris-
tics. We used data from the 2011–2014 National Health 
and Nutrition Examination Study (NHANES) [49, 50], a 
continuous study conducted by the Centers for Disease 
Control and Prevention (CDC) to assess the health and 
nutrition status of the US population who are not in 
institutions. This study collects large amounts of quanti-
tative and qualitative data using face-to-face interviews, 
physical evaluations, computerized questionnaires, and 
laboratory analyses [50] and was conducted following the 
Strengthening the Reporting of Observational Studies in 
Epidemiology guidelines [51].

People over 30 were studied due to the availability of 
data on PD. Information on PD was clinically obtained 
and available in NHANES. The analysis excluded 

Table 1 Comparison of different components of three baseline feature importance algorithms and different combinations of DAFI-
Gower algorithm

Methods Distance Measurement Feature Importance

Quantile
scale

Dummy
conversion

Balanced 
“Quantile
+Dummy”

Mutual Information

Baseline feature importance method 1 1.Algo_distance+feature importance
2.PAM + Gower distance

ｘ ｘ ✓ ✓

Baseline feature importance method 2 1.Two-stage feature importance
2.PAM + Gower distance

ｘ ｘ ｘ ✓

Baseline feature importance method 3 1.Standard mutual information
2.PAM + Gower distance

ｘ ｘ ｘ ✓

Proposed new method 1 PAM + modified Gower distance ✓ ✓ ｘ ｘ
Proposed new method 2 1.Distance adjustment

2.PAM + modified Gower distance
✓ ✓ ✓ ｘ

Proposed new method 3 1.Normalized MI + feature importance
2.PAM + modified Gower distance

✓ ✓ ｘ ✓

DAFI‑Gower Distance
with PAM

1.Distance adjustment + Normalized MI
2. PAM + modified Gower distance

✓ ✓ ✓ ✓

https://github.com/Pinyan-Liu/DAFI-Gower-Distance
https://github.com/Pinyan-Liu/DAFI-Gower-Distance
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participants without complete periodontal exams or 
complete covariate data. We defined the indicator of 
CVDs as being diagnosed with either congestive heart 
failure or stroke [52]. Information on CVDs was self-
reported and available in NHANES. The data set included 
3,760 observations with complete data. Sixteen variables 
(see Supplementary Table 2) were used to generate clus-
ters, including demographic variables, clinical oral health 
data, and CVD-related variables. The number of clusters 
was predetermined to be four [48]. Clustering analysis 
used the same 13 approaches as the simulation study 
(Parts I, II, and III). Clustering quality was assessed using 
descriptive statistics and Silhouette scores measuring 
cohesion and separation [53]. Although Silhouette scores 
should be interpreted cautiously due to their dependence 
on the selected distance metric and lack of comparabil-
ity across different distances, it is also a well-used tool 
for descriptive analysis or as one of multiple metrics in 
assessing clustering outcomes [54]. Multivariable logistic 
regression was used to estimate the association between 
PD and CVDs, adjusting for clusters generated in the 
previous step. Additionally, feature significance calcu-
lated using NMI described in Sect.  2.3 was plotted to 
show clustering contribution.

Results
Simulation results
Results on different baseline mixed type clustering (part I)
Figure  2a and Supplementary Table  3 show the median 
ARI index together with the 25th and 75th percen-
tiles on five mixed type datasets. From the results, the 
DAFI-Gower distance with PAM performed consistently 
the best, especially when only a small portion of vari-
ables contribute to the clustering formation. Although 
KAMILA performed as well as DAFI-Gower in simu-
lations 1 and 5, it does not provide feature importance, 
which is significant in our study settings.

Results on different feature importance algorithms (part II)
Figure 2b and Supplementary Table 4 (blue background) 
show the median ARI index together with the 25th and 
75th percentiles on five mixed type datasets. Separate use 
of distance adjustment or feature importance performed 
relatively well in specific settings, but none showed con-
sistent performance.

Results on different parts of the proposed method (part III)
Figure  2b and Supplementary Table  4 (the yellow part) 
compare DAFI-Gower distance and PAM clustering to 
show each part’s improvement. The results indicate that 
both the DAFI-Gower distance and its component (just 
the distance adjustment factor or only feature impor-
tance weights) performed well. When the data included 

more non-contributable features (simulation 5), DAFI-
Gower distance with PAM performed better than all 
other approaches.

From above, techniques on mixed type data are often 
better than those on quantitative or categorized data 
(Table  1). Our novel approaches for mixed type vari-
ables performed better than existing methods in settings 
investigated, especially when employing the DAFI-Gower 
distance with PAM on datasets with more irrelevant fea-
tures. Our approaches also give feature importance, an 
advantage over traditional mixed type clustering algo-
rithms for visualization and real-world application.

Results from the additional analysis with cluster sizes of 
30, 60, and 90 are shown in Supplementary Tables 7 and 
8. The outcomes are consistent with previous findings. 
DAFI-Gower performs better than all other methods in 
both the baseline mixed type clustering comparison (Part 
I) and feature importance algorithms (Part II). In Part 
III, which compares DAFI-Gower to its individual com-
ponents, DAFI-Gower ranks first in simulations 8, 9, and 
10—where more irrelevant variables are included—and 
second in the remaining cases.

Empirical study results
Clustering results
Figure  3 presents the silhouette index according to 
approaches. The new DAFI-Gower distance and PAM 
clustering approach has the greatest Silhouette score 
(0.79), suggesting the best cluster cohesion and separa-
tion. The baseline mixed type clustering approaches per-
formed worse than feature-importance clustering. The 
green area of Fig.  3 demonstrated that distance adjust-
ments and feature importance weights improved cluster-
ing performance, but the combination did more.

Descriptive statistics for four clusters and the overall 
sample were presented in Table 2. Four distinct segments 
were identified. Cluster 1 is the healthier and younger, 
with a mean age of 50.1 ± 13.8 years, and has the lowest 
proportion of obese people (35.3%), 59.9% of non-smok-
ers, and 86.3% non-diabetes. For PD, Cluster 1 also has 
the highest proportion of healthy people (61.4%) and 
non-severe PD people (92.8%). Another significant char-
acteristic is that Cluster 1 can be treated as “the cluster 
with no CVDs” with only 1.8% of participants having 
CVDs. In contrast, Cluster 3 was the least healthy and 
oldest, with a mean age of 61.5 (SD: 12.3) years; 77.3% of 
participants were overweight or obese, only 37.9% were 
non-smokers, and 62.1% were non-diabetic. For PD, 
Cluster 3 also has more non-severe PD people (13.6%) 
and is “the cluster with the highest probability of CVDs” 
with 34.8% of participants having CVDs. Cluster 2 and 4 
are the relatively intermediate ones.
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Fig. 2 Simulation results of median ARI with 25th and 75th quartile. The first and second ranks are indicated by green and orange boldface, 
respectively. a Results on comparing different baseline mixed type clustering techniques (Part I). b Results on comparing different baseline feature 
importance techniques (Part II) and the comparison of different DAFI-Gower combinations (Part III)
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Figure  4 shows clustering-related feature contribu-
tions to help assess cluster characteristics. From the fig-
ure, coronary heart disease, angina pectoris, heart attack, 
and emphysema are among the averaged contributions, 
which are all CVD-related. Cluster 1’s low CVD preva-
lence may be explained by the top four features.

Association between PD and CVDs
To investigate the benefits of using clusters in analyzing 
the association between PD severity (categorized as non-
severe: combining none, mild, and moderate stages; and 
severe stage) and CVD cases, we conducted three logis-
tic regression analyses: Model 1 - unadjusted analysis; 
Model 2 - conventional adjusted analysis (that adjusted 
for individual characteristics); Model 3 - proposed 
adjusted analysis (that adjusted for cluster membership 
instead of individual characteristics). From Table  3, we 
found that the association between PD and CVDs reveals 
significant insights in Model 1 (odds ratio (OR) 1.97, 95% 
confidence interval (CI) 1.55 to 2.49, p = 0.0045) but not 
in Model 2, which indicates that adjusted for too many 
confounders may diminish the observed association sup-
ported by domain knowledge and previous research [47]. 
However, this issue can be resolved by adjusting for clus-
ter membership, which provides a more accurate repre-
sentation of the data indicated by Model 3 (adjusted OR 
1.95, 95% CI 1.50 to 2.55, p = 0.012). Patients diagnosed 
with severe PD had approximately twice the odds of hav-
ing CVDs compared to those diagnosed with no PD or 
non-severe PD.

In addition, after adjusting for clustering, the analysis 
reveals significantly higher CVDs risks in clusters 3 and 
4, suggesting that these groups warrant further inves-
tigation to identify high-risk populations for targeted 

interventions in future studies, which is also consistent 
with the descriptive statistics presented in Table  3 that 
clusters 3 and 4 have the significantly higher proportions 
of CVDs cases. This phenomenon suggests that the clus-
ters identified by the new method may encompass inher-
ent characteristics, possibly undetected or unmeasured 
risk factors, strongly associated with CVDs risk.

DAFI‑Gower algorithm execution time
Supplementary Table 9, includes the computational cost 
of DAFI-Gower. The execution times of different algo-
rithms on NHANES, with 3,760 observations and 18 var-
iables, are summarized.

Discussion
In this article, we developed the DAFI-Gower technique, 
an innovative two-step framework for mixed type clus-
tering to mitigate the limitations of single-type methods 
and unbalanced measurements like the Gower distance. 
The novelty of DAFI-Gower lies in its distance adjust-
ment, allowing the same level of contributions for differ-
ent feature types. Additionally, the subsequent inherent 
feature importance weights, which account for contri-
butions to clustering, enhance the interpretability of the 
clustering analysis, making it more informative. Results 
from both simulation and real-world studies demonstrate 
that the DAFI-Gower distance with PAM clustering is a 
flexible approach. In real-world studies, DAFI-Gower not 
only performed well in clustering patients but also helped 
to improve association studies.

The DAFI-Gower mitigates some limitations of mixed 
type clustering. Previous studies have often treated 
continuous and categorical data separately or applied 
simplistic methods that fail to capture the nuanced 

Fig. 3 Comparative analysis of clustering performance using the silhouette index across baseline and novel methods on NHANES data. The graph 
delineates method categories through color differentiation
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Table 2 Descriptive statistics table for four clusters and the overall sample for DAFI-Gower clustering results

Cluster 1
(N = 2809)

Cluster 2
(N = 779)

Cluster 3
(N = 66)

Cluster 4
(N = 106)

Overall
(N = 3760)

Age

 Mean (SD) 50.1 (13.8) 47.8 (12.3) 64.9 (12.3) 61.5 (14.1) 50.2 (13.8)

Gender
 Male 1296 (46.1%) 596 (76.5%) 41 (62.1%) 69 (65.1%) 2002 (53.2%)

 Female 1513 (53.9%) 183 (23.5%) 25 (37.9%) 37 (34.9%) 1758 (46.8%)

Age categories
 30–39 Years 769 (27.4%) 237 (30.4%) 3 (4.5%) 9 (8.5%) 1018 (27.1%)

 40–49 Years 696 (24.8%) 208 (26.7%) 4 (6.1%) 17 (16.0%) 925 (24.6%)

 50–59 Years 584 (20.8%) 181 (23.2%) 10 (15.2%) 14 (13.2%) 789 (21.0%)

 60–69 Years 458 (16.3%) 115 (14.8%) 23 (34.8%) 33 (31.1%) 629 (16.7%)

 70–80 Years 302 (10.8%) 38 (4.9%) 26 (39.4%) 33 (31.1%) 399 (10.6%)

Race/Hispanic origin
 Mexican American 242 (8.6%) 162 (20.8%) 4 (6.1%) 10 (9.4%) 418 (11.1%)

 Other Hispanic 226 (8.0%) 82 (10.5%) 4 (6.1%) 10 (9.4%) 322 (8.6%)

 Non-Hispanic White 1406 (50.1%) 285 (36.6%) 45 (68.2%) 46 (43.4%) 1782 (47.4%)

 Non-Hispanic Black 531 (18.9%) 189 (24.3%) 11 (16.7%) 26 (24.5%) 757 (20.1%)

 Other Race-Including Multi Racial 404 (14.4%) 61 (7.8%) 2 (3.0%) 14 (13.2%) 481 (12.8%)

Education level
 Less than 9th grade 81 (2.9%) 76 (9.8%) 4 (6.1%) 12 (11.3%) 173 (4.6%)

 9-11th grade (includes 12th grade with no diploma 232 (8.3%) 158 (20.3%) 6 (9.1%) 14 (13.2%) 410 (10.9%)

 High school graduate/GED or equivalent 499 (17.8%) 231 (29.7%) 14 (21.2%) 26 (24.5%) 770 (20.5%)

 Some college or AA degree 862 (30.7%) 235 (30.2%) 22 (33.3%) 30 (28.3%) 1149 (30.6%)

 College graduate or above 1135 (40.4%) 79 (10.1%) 20 (30.3%) 24 (22.6%) 1258 (33.5%)

BMI categories
 Healthy 804 (28.6%) 216 (27.7%) 15 (22.7%) 26 (24.5%) 1061 (28.2%)

 Overweight 1014 (36.1%) 249 (32.0%) 18 (27.3%) 35 (33.0%) 1316 (35.0%)

 Obese 991 (35.3%) 314 (40.3%) 33 (50.0%) 45 (42.5%) 1383 (36.8%)

Smoking status
 Never smoke 1682 (59.9%) 206 (26.4%) 25 (37.9%) 45 (42.5%) 1958 (52.1%)

 Former smoker 738 (26.3%) 206 (26.4%) 27 (40.9%) 38 (35.8%) 1009 (26.8%)

 Current smoker 389 (13.8%) 367 (47.1%) 14 (21.2%) 23 (21.7%) 793 (21.1%)

Diabetes
 Non-diabetes 2423 (86.3%) 619 (79.5%) 41 (62.1%) 76 (71.7%) 3159 (84.0%)

 Prediabetes 146 (5.2%) 42 (5.4%) 3 (4.5%) 3 (2.8%) 194 (5.2%)

 Diabetes 240 (8.5%) 118 (15.1%) 22 (33.3%) 27 (25.5%) 407 (10.8%)

2012 CDC/AAP Periodontitis Classifications
 Healthy 1724 (61.4%) 266 (34.1%) 26 (39.4%) 40 (37.7%) 2056 (54.7%)

 Mild 60 (2.1%) 12 (1.5%) 2 (3.0%) 0 (0%) 74 (2.0%)

 Moderate 823 (29.3%) 314 (40.3%) 29 (43.9%) 53 (50.0%) 1219 (32.4%)

 Severe 202 (7.2%) 187 (24.0%) 9 (13.6%) 13 (12.3%) 411 (10.9%)

2012 CDC/AAP Periodontitis Classifications (Severe or Non‑severe)
 Non-severe 2607 (92.8%) 592 (76.0%) 57 (86.4%) 93 (87.7%) 3349 (89.1%)

 Severe 202 (7.2%) 187 (24.0%) 9 (13.6%) 13 (12.3%) 411 (10.9%)

CVD cases
 No 2758 (98.2%) 761 (97.7%) 43 (65.2%) 77 (72.6%) 3639 (96.8%)

 Yes 51 (1.8%) 18 (2.3%) 23 (34.8%) 29 (27.4%) 121 (3.2%)
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relationships between different types of data. For 
instance, research by Elsie et  al. [55] emphasized the 
challenges in achieving accurate clustering with mixed 
data types, often resulting in suboptimal interpretabil-
ity. Our framework not only acknowledges these chal-
lenges but also proposes a robust solution by integrating 
a novel distance measurement approach that balances the 
influence of both data types, as well as considering fea-
ture importance to account for feature correlations. This 
methodological advancement directly responds to the 
call for more comprehensive analytical tools capable of 
handling the complexity of modern datasets, as discussed 
in the works of Amir et al. [56].

The strengths of the DAFI-Gower technique include 
its robust performance in scenarios with numerous 
redundant variables, as evidenced by simulations 4 
and 5. In the empirical study using NHANES, the tech-
nique achieved superior performance as indicated by 
the Silhouette index. Moreover, incorporating feature 
importance enhances the interpretability of the cluster-
ing results, allowing better classification into high or 
low-risk CVD groups. Moreover, utilizing clusters in 
association analyses offers distinct methodological and 
clinical advantages. In the NHANES study, adjusting for 
clusters revealed significant associations, which is con-
sistent with the well-established consensus that PD is 
significantly associated with CVD [47], whereas adjust-
ing for individual confounders did not. This approach 
enhances the robustness and clarity of findings by reduc-
ing multicollinearity, simplifying complex relationships, 
and improving statistical power. In addition to investi-
gating associations, the magnitude of the coefficients for 
our clusters indicates substantial variance in CVDs risk, 
demonstrating the potential of mixed type clustering 
techniques to uncover nuanced health patterns.

Despite these strengths, our study has limitations. With 
a time complexity of O(n²), the DAFI-Gower’s runtime 
on NHANES datasets (3,760 observations and 18 vari-
ables) is approximately three minutes, which is longer 
compared to a few seconds for other methods (see Sup-
plementary Table  9). However, it remains acceptable 
for most real-world clinical applications with moderate 
cohort sizes, and we will consider optimization strate-
gies to improve efficiency. In addition, some methods 
were not included as baseline methods due to limitations 

Fig. 4 Feature importance visualization to account for contributions to clustering

Table 3 The coefficient table of the regression analysis

Parameter Parameter 
Estimate(B)

Std. Error OR
(95% CI)

P‑value

Model 1 No adjustments
Intercept −3.50 0.10 / < 2e-16 ***

PD severity 0.68 0.24 1.97 (1.55, 2.49) 0.0045**

Model 2 Not adjust for clusters, only for individual characteris-
tics

Intercept 0.038 0.97 / 0.97

PD severity 0.15 0.36 1.16 (0.81, 1.66) 0.68

Model 3 Adjust for clusters
Intercept −4.06 0.15 / < 2e-16 ***

PD severity 0.67 0.27 1.95 (1.50, 2.55) 0.012*

Cluster 2 0.11 0.29 1.11 (0.84, 1.48) 0.70

Cluster 3 3.33 0.30 28.01 (20.83, 37.66) < 2e-16 ***

Cluster 4 2.99 0.26 19.83 (15.28, 25.74) < 2e-16 ***
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of computational capacity. Two commonly used cluster-
ing methods are the Latent Class Analysis (LCA) and 
Latent Class Model (LCM) [57, 58], which are two statis-
tical techniques used to identify unobserved subgroups 
(latent classes) within a population based on individuals’ 
responses to observed categorical variables. Although 
previous research [57] showed LCM and KAMILA typi-
cally performed best in the setting of heterogeneous data, 
we excluded LCA and LCM in our analysis due to their 
largest computation time and only included KAMILA as 
one of the competitors.

For Gower distance, scaling Euclidean distance for con-
tinuous features can be improved using methods beyond 
the interquartile range (IQR). As suggested by D’Orazio 
[30], k-nearest neighbor [59] and kernel density estima-
tor [60] approaches offer alternative scaling for interval 
and ratio scale variables. Kernel density estimator scales 
distances based on density, giving less weight to values in 
high-density regions and reducing the influence of outli-
ers by downscaling sparse areas. K-nearest neighbor uses 
the average distance to each point’s nearest neighbors to 
set a local scale, emphasizing distances within clusters 
and lessening the impact of extreme values. Although we 
do not have such variables currently, future studies could 
explore these methods when such data is collected, pro-
viding clinical examples.

Feature importance determination can also be refined. 
Currently, continuous variables are categorized by quar-
tiles to calculate MI [19, 33], but advanced methods allow 
for MI estimation without discretization. For example, 
Brian [61] introduced a non-binning MI estimator for 
mixed discrete and continuous data, which can also be 
adapted for Jensen–Shannon divergence, providing a 
sophisticated measure of feature importance. Addition-
ally, joint data reduction techniques combine dimension 
reduction and clustering, enabling mixed data cluster-
ing with transformed variables on comparable scales 
[62]. For datasets with diverse feature types, like text, 
approaches using distortion and convex optimization 
offer more complex feature weighting [63].

Future work may explore more accurate methods for 
calculating MI for continuous variables. In our study, 
algorithms were performed with default values for fair-
ness and simplicity; however, optimizing these param-
eters could further enhance performance. For example, 
when the number of clusters is not predefined, methods 
such as the elbow method or prediction strength [64] can 
help determine an appropriate cluster count. Addition-
ally, information-based approaches like BIC [65] could be 
applied in preprocessing, provided that a suitable likeli-
hood expression is defined. Although this study includes 
commonly-used clustering methods, future work 
could expand the comparison to additional algorithms 

compatible with our proposed Gower distance to pro-
vide a more comprehensive evaluation. While this study 
is limited to hard clustering, future work could explore 
fuzzy clustering methods, which allow data points to 
belong to multiple clusters with varying degrees of mem-
bership [66], offering a more flexible clustering approach.

The practical implications of our study are significant. 
The DAFI-Gower technique’s ability to improve cluster 
quality based on feature importance makes it particularly 
useful in clinical studies where many measures are taken, 
but their contributions to outcomes are unclear. Besides, 
using clusters in association analyses enriches our under-
standing of disease mechanisms and opens avenues for 
tailored preventive strategies addressing the multifacto-
rial nature of chronic diseases like CVDs. This approach 
supports more rational patient subgroups, facilitating 
personalized treatment plans and improving patient out-
comes. Future research should focus on refining the dis-
tance measures and feature importance calculations to 
further improve the technique’s performance and appli-
cability in diverse datasets.

Conclusion
This paper introduced DAFI-Gower, an innovative clus-
tering approach for mixed-type datasets that incorpo-
rates feature importance to improve cluster quality and 
interpretability. DAFI-Gower provides a robust tool for 
identifying meaningful patterns in complex data, sup-
porting data-driven decision-making in epidemiology 
and other fields requiring effective clustering.
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